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Diffraction of short pulses with boundary diffraction wave theory

Z. L. Horváth and Zs. Bor
Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged, Hungary

~Received 11 May 2000; published 11 January 2001!

The diffraction of short pulses is studied on the basis of the Miyamoto-Wolf theory of the boundary
diffraction wave, which is a mathematical formulation of Young’s idea about the nature of diffraction. It is
pointed out that the diffracted field is given by the superposition of theboundary wave pulse~formed by
interference of the elementary boundary diffraction waves! and thegeometric (direct) pulse~governed by the
laws of geometrical optics!. The case of a circular aperture is treated in details. The diffracted field on the
optical axis is calculated analytically~without any approximation! for an arbitrary temporal pulse shape.
Because of the short pulse duration and the path difference the geometric and the boundary wave pulses appear
separately, i.e., the boundary waves are manifested in themselves in the illuminated region~in the sense of
geometrical optics!. The properties of the boundary wave pulse is discussed. Its radial intensity distribution can
be approximated by the Bessel function of zero order if the observation points are in the illuminated region and
far from the plane of the aperture and close to the optical axis. Although the boundary wave pulse propagates
on the optical axis at a speed exceedingc, it does not contradict the theory of relativity.

DOI: 10.1103/PhysRevE.63.026601 PACS number~s!: 42.25.Fx, 42.25.Gy, 42.25.Bs
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I. INTRODUCTION

Thomas Young was the first who made an attempt to
plain the phenomena of diffraction on the basis of the wa
theory @1–5#. He assumed that the diffraction pattern aris
from the interference of the incident wave propagating
accordance with the laws of geometrical optics and
boundary diffraction wave originated from the edge of t
diffracting body. Because of its qualitative formulation a
the success of Fresnel’s theory Young’s idea had been
gotten for a long time. Young’s views was independen
rediscovered and formulated in a quantitative manner
Maggi and Rubinowicz@2–5#. The theory of the boundary
diffraction wave was improved by Miyamoto and Wo
@3–6#. For more historical details of the topic see the wor
of Rubinowicz@2,3# and Wolf @4,5#.

The temporal and spatial behavior of a focused sh
pulse was studied in Refs.@7–9#. Perhaps the most unex
pected result of that investigation is that a spike appears
the optical axis in front of the horseshoe-shaped pulse f
~see Fig. 2 in Ref.@7#!. If the illumination of the lens is not
homogeneous but spatially Gaussian with a negligible tr
cation of the input beam the forerunner pulse disappears@8#
~see Fig. 2 in Ref.@8#!. If the truncation of the incoming
spatially Gaussian beam is not negligible the spike app
on the optical axis again with the amplitude being prop
tional to the amplitude of the incoming field on the le
aperture@10,11#. From this fact and the other properties
the spike~position, speed, and radial intensity distributio!
we concluded that the intensity spike~pulse! is caused by the
superposition of the boundary waves generated by the
aperture@7–11#. In order to emphasize the origin of the pul
on the optical axis it was calledboundary wave pulse. The
other pulse front was namedmain pulse.

However, these are only indirect marks for the origin
the boundary wave pulse. We have owed for its direct d
vation up to now. The aim of this paper is to give a dire
explanation of the formation of the boundary wave pul
1063-651X/2001/63~2!/026601~11!/$15.00 63 0266
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For the sake of simplicity all the aberrations will be ignore
that is, we will assume that the pulse front which fills th
aperture is perfectly spherical or in special case plane.

II. BOUNDARY WAVE PULSE

Consider an~arbitrary! spherical or plane scalar wave di
fracted at an aperture in an opaque plane screenS. We take
the Cartesian reference system with the originO in the ap-
erture~Fig. 1! and with the axisz being perpendicular to the
plane of the aperture pointing into the half space into wh
the light propagates.

If the incident wave is monochromatic with angular fr
quencyv the diffracted wave at a pointP5(x,y,z) in the
regionz.0 can be expressed in the form@6#

U~P,v!5UG~P,v!1UB~P,v!, ~1!

where UG(P,v) represents a wave propagating in acc
dance with the laws of geometrical optics andUB(P,v) de-
scribes a disturbance emerging from the points of the edg

FIG. 1. Notations relating to the calculations.
©2001 The American Physical Society01-1
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the aperture. Within the accuracy of the Kirchhoff diffractio
theory theUB(P,v) boundary diffraction wave is given b
@6#

UB~P,v!5 R
G
Ui~Q,v!

e2 iks

4ps

~eW s3pW !eW t

11eW spW
dG, ~2!

where G denotes the boundary of the aperture andQ is a
typical point ofG, Ui is the incident field,s is the distance
QP, k5v/c is the wave number (c is the speed of light!, eW s

is the unit vector pointing fromQ to P, pW is a unit normal
vector of the phase front of the incident wave at pointQ

pointing in the direction of the propagation andeW t is the unit
tangent vector ofG at pointQ ~Fig. 1!. As it is known@6#, in
case of monochromatic spherical or plane waves Eq.~1! with
Eq. ~2! gives the exact solution of the Kirchhoff diffractio
integral and it can be regarded as a good approximation
other types of monochromatic fields provided that the in
dent field can be treated by geometrical optics.

A nonmonochromatic field can be represented as a c
position of monochromatic waves:

u~P,t !5F 21$U~P,v!%, ~3!

where U(P,v)5F$u(P,t)% and the symbolsF and F 21

denote the Fourier transformation and its inverse, resp
tively. Decomposing the incident field by the Fourier tran
form into its monochromatic components and using Eq.~1!
for each spectral component one can get a similar expres
for the diffracted field:

u~P,t !5uG~P,t !1uB~P,t !, ~4!

where

uG~P,t !5F 21$UG~P,v!%, ~5a!

uB~P,t !5F 21$UB~P,v!%, ~5b!

and UB(P,v) is defined by Eq.~2!. Equation~4!, likewise
Eq. ~1!, is valid for spherical or plane waves and can
regarded as a good approximation in case of other type
incident fields if the input field can be described by ge
metrical optics. We will show that under the circumstanc
treated in Refs.@7–9#, that is, in case of a circular apertu
and convergent spherical pulse,uG(P,t) anduB(P,t) can be
associated with the main and boundary wave pulses~men-
tioned in Sec. I!, respectively. Therefore, we will refer to th
field described by Eq.~5b! @with Eq. ~2!# as the boundary
wave pulse.

The special case of a circular aperture, with incident fie
having axial symmetry around the optical axis~symmetry
axis of the circular aperture!, could be of special importance
In this case the amplitude ofUB and UG could be compa-
rable along the optical axis@12#. In the following we will
study such cases. The three cases~plane, convergent, an
divergent spherical waves! in which Eq. ~4! gives the exact
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solution will be treated in detail. The radius of the apertu
will be denoted bya and the origin of the reference fram
will be taken in the center of the aperture.

A. Plane wave

Let us assume that the incident wave is a plane wave w
normal incidence, that is

ui~P,t !5u0h~ t2z/c!, ~6!

whereu0 is a constant andh(t) describes the arbitrary time
evolution of the pulse. It is evident that the wave propagat
in accordance with the laws of geometrical optics is given

uG~P,t !5H ui~P,t !, if P is in the direct beam~r ,a!,

0, if P is in the shadow~a,r !.
~7!

By calculating the Fourier transform ofui(P,t) one can ob-
tain that

Ui~P,v!5F$ui~P,t !%5u0H~v!e2 ikz, ~8!

whereH(v)5F$h(t)%. At the plane of the aperturez50 so
Ui(Q,v)5u0H(v). After a straightforward calculation the
monochromatic boundary diffraction wave at a pointP in the
regionz.0 is given by

UB~r ,z,v!5
u0H~v!

2p E
0

p

e2 iks(c)S 11
z

s~c! Dg~K,c!dc,

~9!

wherer 5Ax21y2 is the distance of pointP from the optical
axis,

s~c!5Az21a21r 222ar cosc, ~10!

K5r /a is a dimensionless variable and

g~K,c!5
K cosc21

11K222K cosc
. ~11!

From the definition ofK one can see that 0<K,1 if P is in
the direct beam, andK.1 when P is in the geometrical
shadow. The field of the boundary wave pulse is the inve
Fourier transform of Eq.~9!:
1-2
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DIFFRACTION OF SHORT PULSES WITH BOUNDARY . . . PHYSICAL REVIEW E63 026601
uB~r ,z,t !5
u0

2pE0

p

h~ t2s~c!/c!S 11
z

s~c! Dg~K,c!dc

~12a!

5
u0eiv0t

2p E
0

p

v~ t2s~c!/c!

3e2 ik0s(c)S 11
z

s~c! Dg~K,c!dc, ~12b!

where in the last step the usual expression of

h~ t !5v~ t !eiv0t ~13!

was used. Herev(t) and v0 denote the temporal envelop
and the central angular frequency of the input pulse, resp
tively, andk05v0 /c is the wave number atv0. It is easy to
see that on the optical axis the integrand in Eq.~12! does not
depend onc so for r 50 the boundary wave pulse is give
by

uB~z,t !52AB~z!u0h~ t2s0 /c!, ~14!

where

s05Aa21z2, ~15!

and AB(z) is the relative amplitude of the boundary wa
pulse~compared to the incident pulse!:

FIG. 2. ~a! Diffraction pattern of a short pulse having plan
pulse front incident normally on a circular aperture (a denotes the
radius of the aperture!. ~b! The intensity distribution of the geome
ric ~upper half! and boundary wave~lower half! pulses. The dif-
fracted field is given by the sum of the fields of the geometric a
the boundary wave pulses. The intensity is measured in arbit
units @a.u.#.
02660
c-

AB~z!5
11z/s0

2
5

11z/Aa21z2

2
. ~16!

It is worth introducing a new variable defined by

T~z!5
s02z

c
5

Aa21z22z

c
. ~17!

Then one can write Eq.~14! in the form of

uB~z,t !52AB~z!u0h@ t2z/c2T~z!# ~18a!

52AB~z!ui@z,t2T~z!#. ~18b!

As mentioned before, the diffracted field in the half spacz
.0 can be calculated byu(P,t)5uG(P,t)1uB(P,t) @Eq.
~4!# whereuG anduB are given by Eqs.~7! and~12!, respec-
tively. It follows from Eq. ~18! that for the pointsP at the
optical axis we have a simple expression:

u~z,t !5ui~z,t !2AB~z!ui@z,t2T~z!#, ~19!

which means that as a result of the diffraction two puls
propagate on the optical axis with the same temporal sh
The time difference between the two pulses at an axial p
P is given by T(z). One can see from Eq.~17! that 0
,T(z),a/c and T(z) is a monotonously decreasing fun
tion of z, i.e., larger values ofz yield smaller temporal sepa
ration. This means that the boundary wave pulse always
rives later than the geometric pulse, but it is catching up
time evolves. The minus sign shows that a phase shift op
occurs between the geometric~direct beam! and the bound-
ary wave pulses. It follows from Eq.~16! that the amplitude
AB(z) varies between 1/2 and 1 and asymptoticallyAB(z)
'1 if a2!z2.

Figure 2~a! shows the diffraction pattern of at510 fs
pulse with a Gaussian temporal shape andl052p/k05800
nm central wavelength at timet5600 ps calculated from
Eqs.~4!, ~7! and~12!. The incoming pulse reaches the pla
of the diffracting aperture att50. The radius of the apertur
was assumeda52 mm. In Fig. 2~b! the intensity distribution
of the geometric@calculated from Eq.~7!# and the boundary
diffraction waves@calculated from Eq.~12!# was plotted in
the upper and the lower halves of the figure, respectiv
The correspondence between the intensity and the shadi
indicated by the gray scale next to the linear intensity axis
Fig. 4~a!. The diffraction pattern contains two types of inte
ference stripes. One of them is caused by the interferenc
the elementary boundary diffraction wavelets. These stri
can be seen both in Figs. 2~a! and~b!. The other interference
stripes are caused by the interference between the geom
and the boundary diffraction waves. Obviously this type
stripes occurs only in Fig. 2~a!.

B. Divergent spherical wave

Consider a divergent spherical wave generated by a p
sourceF located on the optical axis, that is,F5(0,0,2d),

d
ry
1-3



o -

of
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whered.0 is the distance of the source from the plane
the aperture. Then the incident wave is given by

ui~P,t !5u0

h~ t2R/c!

R
, ~20!
-
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-
rs

e

02660
fwhereu0 is a constant,h(t) is an arbitrary function describ
ing the temporal shape of the pulse, andR
5Ax21y21(d1z)25Ar 21(d1z)2 is the distanceFP. It
is clear that the wave propagating according to the law
geometrical optics is described by
uG~P,t !5H ui~P,t !, if P is in the direct beam@r ,ad/~d1z!#,

0, if P is in the shadow@ad/~d1z!,r #.
~21!
al
ent

ave
The monochromatic components ofui(P,t) is given by

Ui~P,v!5F$ui~P,t !%5u0H~v!
e2 ikR

R
, ~22!

whereH(v)5F$h(t)%. After a long, but straightforward cal
culation one can obtain

UB~r ,z,v!5
u0H~v!e2 ik f

2p~d1z!
E

0

p

e2 iks(c)

3S 11
dz2a21ar cosc

s~c! f Dg~K,L,c!dc

~23!

for the monochromatic boundary diffraction wave at a po
P in the regionz.0, wheref 5Aa21d2 is the radius of the
wave front that fills the aperture,s5s(c) is the same as in
Eq. ~10!, K a dimensionless variable given by

K5
d

d1z

r

a
, ~24!

L5a/d is a dimensionless parameter and

g~K,L,c!5
K cosc21

11K222K cosc1K2L2sin2c
. ~25!

From Eq.~24! it follows that 0<K,1 if P is in the direct
beam, andK.1 whenP is in the geometrical shadow, like
wise in the case of plane waves. By calculating the inve
Fourier transform of Eq.~23! one can obtain the field of th
boundary wave pulse:

uB~r ,z,t !5
u0

2p~d1z!
E

0

p

hS t2
f 1s~c!

c D
3S 11

dz2a21ar cosc

s~c! f Dg~K,L,c!dc

~26a!
t

e

5
u0ei (v0t2k0f )

2p~d1z!
E

0

p

vS t2
f 1s~c!

c De2 ik0s(c)

3S 11
dz2a21ar cosc

s~c! f Dg~K,L,c!dc,

~26b!

where in the last steph(t)5v(t)eiv0t is used again. On the
optical axis (r 50) the integrand in Eq.~26! is a constant so
the integration results in a multiplication byp:

uB~z,t !52AB~z!u0

h@ t2~ f 1s0!/c#

d1z
, ~27!

FIG. 3. ~a! Diffraction pattern of a short divergent spheric
pulse incident on a circular aperture. The center of the incid
pulse front is located on the optical axis.~b! The intensity distribu-
tion of the geometric~upper half! and boundary wave~lower half!
pulses. The interference of the geometric and the boundary w
pulse yields the diffraction pattern plotted on the left half~a!. The
intensity is measured in arbitrary units@a.u.#.
1-4
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wheres05Aa21z2 @Eq. ~15!# and the relative amplitude o
the boundary wave pulse is given by

AB~z!5
1

2 S 11
dz2a2

fAa21z2D . ~28!

If we introduce a variable with a dimension of time defin
by

T~z!5
f 2d

c
1

s02z

c
~29a!

5
f 2d

c
1

Aa21z22z

c
, ~29b!

Eq. ~27! can be written in the form of

uB~z,t !52AB~z!ui@z,t2T~z!#. ~30!

The diffracted wave behind the screen is the sum of the fie
of the geometric~direct! beam and the boundary wave pul
@Eq. ~4!#. Using Eqs.~21! and~30! on the optical axis it can
be written in a form of

u~z,t !5ui~z,t !2AB~z!ui@z,t2T~z!#. ~31!

One can conclude from Eq.~31! that, as a result of the dif
fraction, two pulses with the same temporal shape propa
along the optical axis and the temporal shape of the pulse
identical with the input pulse shape. It follows from Eq.~29!
that 0,( f 2d)/c,T(z),( f 2d)/c1a/c and T(z) de-
creases monotonically. From this we draw a conclusion si
lar to the plane wave case, that is at a point given byz.0 the
boundary wave pulse always arrives later than the geom
pulse. The temporal separation of the two pulses is alw
larger than (f 2d)/c, and it decreases with increasingz.

Figure 3~a! shows the diffraction pattern of at510 fs
pulse with a Gaussian temporal shape andl05800 nm cen-
c

02660
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tral wavelength at the moment 1000 ps after the incom
pulse reached the edge of the aperture~i.e., t5 f /c11000 ps
'3000 ps! calculated from Eqs.~4!, ~21!, and~26!. The cal-
culation was done by assuming thata52 mm andf 5600
mm. The intensity distribution of the geometric@Eq. ~21!#
and the boundary diffraction waves@Eq. ~26!# were depicted
in the upper and the lower halves of Fig. 3~b!. The intensity
distributions were plotted with the same gray scale used
the previous case. Again we can observe the two type
interference stripes. The ones, occurring both in Figs. 3~a!
and ~b!, correspond to the interference of the element
boundary diffraction wavelets, whereas the stripes obse
able only in Fig. 3~a! correspond to the interference betwe
the geometric and boundary waves.

C. Convergent spherical wave

Consider now a spherical wave converging towards
axial focal point F in the regionz.0. Then F5(0,0,d),
whered.0 is the distance of the focus from the plane of t
aperture. In front of the focal plane (z,d) the incident wave
is represented by a converging spherical wave. When
input wave passes through the focus it becomes a diver
spherical wave and a phase change ofp occurs@4,12#. This
behavior~known as phase anomaly or Gouy shift! is a geo-
metrical optical effect that occurs along the rays pass
through either of the two principal centers1 of the incident
wave front@4,6#. Hence the incident wave can be written in
form of

ui~P,t !5H u0h~ t1R/c!/R, if z,d,

2u0h~ t2R/c!/R, if d,z,
~32!

whereu0 is a constant,h(t) is an arbitrary function andR
5Ax21y21(z2d)25Ar 21(z2d)2 is the distanceFP and
the sign change represents the phase shift ofp mentioned
above. It is easy to show that the wave propagating acc
ing to the law of geometrical optics is given by
uG~P,t !5H ui~P,t !, if P is in the direct beam@r ,ad/uz2du#,

0, if P is in the shadow@ad/uz2du,r #.
~33!
On the optical axis Eq.~33! yields

uG~z,t !5ui~z,t !52u0

h~ t2~z2d!/c!

z2d
. ~34!

In the same way as treated in the two previous cases one
calculate the boundary wave pulse. It is given by

uB~r ,z,t !5
u0

2p~d2z!
E

0

p

hS t2
s~c!2 f

c D
3S 11

dz1a22ar cosc

s~c! f Dg~K,L,c!dc

~35a!
an

5
u0ei (v0t1k0f )

2p~d2z!
E

0

p

vS t2
s~c!2 f

c De2 ik0s(c)

3S 11
dz1a22ar cosc

s~c! f Dg~K,L,c!dc,

~35b!

wheref 5Aa21d2 is the focal length~the radius of the pulse

1In our special case the two principal centers coincide.
1-5
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front filling the aperture!, the dimensionless variableK is
now defined by

K5
d

d2z

r

a
, ~36!

and in the last steph(t)5v(t)eiv0t is used again. The defi
nitions of H(v), s5s(c), L andg(K,L,c) are the same a
the ones for the divergent spherical wave, given byH(v)
5F$h(t)%, Eq.~10!, L5a/d and Eq.~25!, respectively.

It follows from Eq. ~36! that 0<uKu,1 if P is in the
direct beam,uKu.1 whenP is in the geometrical shadow,2

and 0<K if P is between the plane of the aperture and
focal plane (0,z,d) or K<0 for points behind the foca
plane (d,z).

On the optical axis (r 50) Eq. ~35! yields

uB~z,t !5AB~z!u0

h@ t2~s02 f !/c#

z2d
, ~37!

wheres05Aa21z2, and the relative amplitude of the boun
ary wave pulse is given by

AB~z!5
1

2 S 11
dz1a2

fAa21z2D . ~38!

Again, we introduce a variable with a dimension of tim
defined by

T~z!5
d2 f

c
1

s02z

c
~39a!

5
d2 f

c
1

Aa21z22z

c
, ~39b!

then Eq.~37! can be written in the form of

uB~z,t !52AB~z!ui~z,t2T~z!!. ~40!

As it was mentioned before, the diffracted wave behind
screen is the sum of the fields of the geometric~direct! beam
and boundary wave pulse@Eq. ~4!#. It follows from Eqs.~33!
and~40! that the field on the optical axis can be written in
form of

u~z,t !5ui~z,t !2AB~z!ui~z,t2T~z!!. ~41!

From Eq.~41! we see that two pulses with the same tempo
shape propagate on the optical axis and the temporal s
of the pulses is identical with the input pulse shape as
the case before. It follows from Eq.~39! that the temporal
separation of the two pulses (T(z)) decreases monotonous
betweena/c2( f 2d)/c.0 and 2( f 2d)/c,0 and T(z)

2When the observation point is in the geometrical shadow,K→
6` if z→d andr is fixed. Then, because of large values ofK, Eq.
~35! is not convenient for the computation of the boundary diffra
tion wave. A more Appropriate equivalent formula can be found
the Appendix@Eq. ~A6!#.
02660
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50 at the focal point (z5d). That is, T(z) is positive in
front of the focal point (0,z,d) and negative after the
focal point (d,z), which means that at an axial point behin
the aperture the boundary wave pulse arrives later than
geometric pulse in front of the focal point, and it preced
the geometric pulse after the focus~see Figs. 4 and 5!. The
boundary wave pulse overtakes the geometric pulse at
focal point. At the focal point bothuG(z,t) anduB(z,t) has
singularity @see Eqs.~34! and Eq.~37!#, but the sum of the
two fields is finite. Calculating the limit of Eq.~41! one can
obtain the field at the focus (z5d) by

u~F,t !5u0

f 2d

c f
h8~ t !. ~42!

The statements stated above are in full agreement w
our previous results published in Refs.@7,9,11#. Using the
approximations applied there,3 Eqs. ~41! and ~42! turn into
the equation for the focused field published previously@Eq.
~18! in Ref. @9# and Eq.~18b! in Ref. @11##. In this treatment
no approximation was used. Equation~41! gives the exact
solution of the diffraction problem within the validity o
Kirchhoff’s diffraction theory.

Figures 4~a! and 5~a! show the diffraction pattern of at
510 fs long pulse with a Gaussian temporal shape andl0
5800 nm central wavelength at the momentst5230 ps and
t530 ps, respectively@calculated from Eqs.~4!, ~33!, and
~35!#. The gray scale next to the linear intensity axis sho
the relation between the intensity and the shading. T
shaded image on the right was depicted with proportio
scaling of the spatial coordinates (z2d) andr. The calcula-
tion was done by assuming thata52 mm andf 550 mm.
The incoming pulse reaches the edge of the aperture att5
2 f /c and passes through the focus att50. In Figs. 4~b! and
5~b! the intensity distribution of the geometric@Eq. ~33!# and
the boundary diffraction wave@Eq. ~35!# was depicted in the
upper and the lower halves of the figure. Comparing Fig
with Fig. 4 one can see that at timet530 ps the boundary
wave pulse is a little bit closer to the geometric pulse than
time t5230 ps. This is a manifestation of the asymmetry
the focused field which becomes more and more consi
able for smaller Fresnel numbers@13#. In our case the
Fresnel number isN5a2/(l0f )5100.

D. Properties of the boundary wave pulse

From Figs. 2–5 one can conclude that the shape of
boundary wave pulse is similar to a letter X. This X shap
profile is not the only similarity between the boundary d
fraction wave pulse and the so-called X wave@14–16#. We
will later see that the boundary wave pulse propagates
superluminal velocity likewise an X wave@15,16#. Besides
the similarities there are differences between the two wav
The most important one may be that in contrast to an
wave, which is a nondiffracting beam~i.e., it preserves its

-
3In Refs. @7,9# paraxial and Debye approximations, in Ref.@11#

paraxial approximation was used.
1-6



the focus.

s

DIFFRACTION OF SHORT PULSES WITH BOUNDARY . . . PHYSICAL REVIEW E63 026601
FIG. 4. ~a! Diffraction pattern of a short convergent spherical pulse passing through a circular aperture before the pulse reaches
The inset on the right shows the intensity distribution with proportional scaling of the spatial coordinates.~b! The intensity distribution of the
geometric~upper half! and boundary wave~lower half! pulses. On the optical axis in front of the focus (z,d) the boundary wave pulse i
closer to the aperture than the geometric pulse.
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the
radial profile!, the boundary wave pulse spreads during
propagation@see Eq.~53!, Figs. 4 and 5#.

The boundary wave pulse has a significant intensity
the optical axis and the boundary of the geometrical shad
This behavior is expected. Because of the cylindrical sy
metry the interference of the elementary boundary diffract
waves is constructive along the optical axis. Since the
fracted wave is a continuous function of the position and
geometrical wave is discontinuous across the edge of
geometrical shadow, the boundary pulse should also be
continuous in order to compensate for the discontinuity.

It has been shown that for all the three previous cases
boundary wave pulse on the optical axis is given by

uB~z,t !52AB~z!ui@z,t2T~z!#, ~43!

where AB(z) is the relative amplitude andT(z) the time
delay compared to the direct~geometric! wave @see Eqs.
~18!, ~30!, and~40!#. Both of these quantities have a simp
geometrical meaning. Using the notations of Fig. 6, it is o
vious that cosa5z/s0, sina5a/s0, cosb5d/f and sinb5a/f.
Hence, Eqs.~16!, ~28!, and ~38! can be summarized in
uniform expression:

AB~z!5
11cosx

2
5cos2

x

2
, ~44!
02660
e

n
w.
-
n
f-
e
e

is-

he

-

wherex is the angle which the scattered ray starting from
typical pointQ of the aperture and passing through the ax
point given byz makes with the direction of the propagatio
of the incoming wave~see Fig. 6!. If tQ and tO denote the
moments when the incoming pulse reaches the edge of
aperture and the origin of the reference frame~Fig. 6! then
the time delay can also be expressed in a uniform expres
of

T~z!5Dt1
s02z

c
, ~45!

where Dt5tQ2tO is a constant~depending on geometry!.
The position of the boundary wave pulse on the optical a
at the momentt>tQ1a/c can be calculated from Eqs.~43!
and ~45!. It is given by

zB~ t !5A@c~ t2tQ!#22a2. ~46!

Hence the peak of the boundary wave pulse moves along
optical axis at a velocity of

vB5 żB5
cc~ t2tQ!

A@c~ t2tQ!#22a2
5c

s0~zB!

zB
5

c

cosa
, ~47!
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FIG. 5. ~a! Diffraction pattern of a short convergent spherical pulse passing through a circular aperture after the pulse has passe
the focus. The inset on the right shows the intensity distribution with proportional scaling of the spatial coordinates.~b! The intensity
distribution of the geometric~upper half! and boundary wave~lower half! pulses. On the optical axis behind the focus (d,z) the boundary
wave pulse is farther from the aperture than the geometric pulse.
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wherea is marked in Fig. 6. Although this velocityexceeds
c, it does not violate the relativistic causality principle, sin
the elementary boundary wavelets originated from the e
of the aperture propagateexactlyat a speed ofc along the
scattered rays. Because of this an interference phenom
on the optical axis caused by boundary diffraction wav
~and so the boundary wave pulse! moves at a speed o
c/cosa, wherea is the angle which the scattered ray mak
with the optical axis at an axial point~see Fig. 6!.

As mentioned in the previous section the interferen
among the elementary boundary waves produces an inte
ence pattern consisting of concentric rings in a plane be
perpendicular to the optical axis. The structure of that patt
can hardly be seen in Figs. 2–5. In order to expose the
tails, a portion of Fig. 4~a! ~neighboring the optical axis! is
depicted again in Fig. 7~a! with a proportional scaling of the
spatial coordinates. The position of the boundary wave pu
on the z axis at t5230 ps is denoted byz0 ~i.e., z0

5zB(t)). The radial distribution of the boundary wave pul
resembles the one of a Bessel beam@17# of zero order, as its
radial intensity distribution is given by the square of t
Bessel function of zero order (J0

2). The radial intensity dis-
tribution of the boundary wave pulse can be explained
follows: The expression of the boundary wave pulse for
the three cases can be written in a form of
02660
e

on
s

s

e
er-
g

rn
e-

e

s
ll

uB~r ,z,t !5
u0eiv0(t2tQ)

p E
0

p

v~ t2tQ2s~c!/c!e2 ik0s(c)

3A~r ,z,c!g~K,L,c!dc, ~48!

where A(r ,z,c) is a given function~and L50 for plane
waves!. If the observation point is in the direct beam and it
close to the optical axis,uKu!1 and henceg(K,L,c)'21.
Furthermore, if the observation point is far from the plane
the aperture, by expanding the square root in Eq.~10!, s can
be approximated by

s5As0
21r 222ar cosc's01

r 222ar cosc

2s0
. ~49!

The last approximation is valid ifur 222ar coscu!s0
2, where

s05Aa21z2. Under these conditionsA(r ,z,c) and
g(K,L,c) are slowly varying functions ofc. We will ap-
proximate them in the integrand by their values at the opt
axis ~that is A0(z)5A(0,z,c) and 21, respectively!. The
variation of the integrand caused by envelopev(t) is also
negligible if ra/s05r sina!ct, wheret denotes the tempo
ral duration of the pulse. That is, if the observation point is
the direct beam, and it is far from the plane of the apert
and close to the optical axis andr sina!ct, the field of the
boundary wave pulse can be approximated by
1-8
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DIFFRACTION OF SHORT PULSES WITH BOUNDARY . . . PHYSICAL REVIEW E63 026601
uB~r ,z,t !'2A0~z!u0hS t2tQ2
s0

c
2

r 2/~2s0!

c D
3F 1

pE0

p

eik0r sin a coscdcG , ~50!

where the expression ofh(t)5v(t)eiv0t is used in the last
step. Since, the integral in the square bracket equal
pJ0(k0sinar) and A0(z)u0h(t2tQ2s0 /c)5AB(z)ui(z,t
2T(z)), we have

uB~r ,z,t !'2AB~z!uiS z,t2T~z!2
r 2

2cAa21z2D
3J0~k0sinar !, ~51!

FIG. 6. Notations relating to the calculations for the axial b
havior of the boundary wave pulse.tQ and tO denote the time in-
stants when the pulse front reaches the edge of the aperture an
origin of the reference frame, respectively. The pulse fronts belo
ing to these instants are plotted with solid and dashed line.
02660
to

where sina5a/Aa21z2. Owing to our assumptions (r sina
!ct and r !a) the radial variation caused by the fact
r 2/(2cAa21z2)5(r /a)r sina/(2c) is negligible with respect
to J0, that is the field of the boundary pulse can be appro
mated by

uB~r ,z,t !'2AB~z!ui~z,t2T~z!!J0~k0sinar !. ~52!

Figure 7~b! shows the comparison of the radial intensity d
tribution att5230 ps in planez05zB(t) calculated from the
exact@Eq. ~35!# and the approximate@Eq. ~52!# formulas for
different values of the incoming pulse durationt. The rest of
the parameters of the calculation were the same as the
used for Fig. 7~a!. The results of the exact expression we
displayed by dotted (t510 fs! and solid (t530 fs! lines.
The intensity belonging to the approximate formula was
dicated with hollow circles. The approximation is much be
ter for larger pulse duration. For smaller pulse duration
intensity decreases faster than the approximate intensity
the approximation gives the radii of the dark rings acc
rately. The radius of themth dark ring is given by

r m5
xm

2p
A11S z

aD 2

l0'
xm

2p

z

a
l0 , ~53!

wherexm is themth positive root of the equationJ0(x)50.4

III. CONCLUSIONS

The diffraction of femtosecond pulses at a circular ap
ture has been studied on the basis of the Miyamoto-W
theory of the boundary diffraction wave which is a mat
ematical formulation of Young’s idea about the nature
diffraction. It has been pointed out that the diffracted pu
can be represented as a sum of the boundary wave p
~generated by the edge of the aperture! and the ‘‘geometric’’
pulse ~represented by geometrical optics!. Because of the
pulsed illumination and the path difference between the g
metric and boundary waves the geometric and bound
wave pulses appear separately. This is the main differe
between the monochromatic and pulsed illumination. T
monochromatic waves are infinite waves hence the bound
wave and the geometric wave appear simultaneously. Th
is no way to separate the two waves. The boundary wave
directly be observed only in the geometric shadow wher
equals to the diffracted wave. In case of pulsed illuminati
because of the finite and short pulse duration, the bound
waves are manifested not only in the geometrical shadow
in the illuminated region, too.

The properties of the boundary wave pulse have b
studied. The diffracted field on the optical axis has be
calculated analytically for arbitrary temporal pulse shapes
has been pointed out that the boundary wave pulse pro
gates on the optical axis at a speed larger thanc. An approxi-
mate expression has been derived for the intensity of
boundary wave pulse in a plane perpendicular to the opt

4x152.405,x255.5201,x358.6537,x4511.7915.

-

the
g-
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Z. L. HORVÁTH AND ZS. BOR PHYSICAL REVIEW E63 026601
FIG. 7. ~a! In order to expose the details of the radial distribution of the intensity the axial region of Fig. 4~a! is depicted again with
proportional scaling of the coordinates. The radial intensity distribution of the boundary wave pulse resembles the one of a zero ord
beam.~b! Radial intensity distribution of the boundary wave pulse for different values of the pulse durationt. Close to the axis the intensity
can be approximated by the Bessel function of zero order (J0). The larger the pulse duration the better the approximation.
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axis. The radial intensity distribution can be approximated
the Bessel function of zero order if the observation points
in the illuminated region~in the sense of geometrical optic!
far from the plane of the aperture and close to the opt
axis.

Although the Miyamoto-Wolf theory of the boundary di
fraction wave gives the exact result of the Kirchhoff diffra
tion integral only for spherical and plane waves, it can
regarded as a good approximation for other types of wa
Therefore the boundary wave pulse can appear for o
types of incoming waves~or in presence of aberrations!. As
it was mentioned in the introduction, the boundary wa
pulse appears when a short pulse is focused by a lens an
incoming beam is truncated by the lens aperture for b
homogeneous or spatially Gaussian illumination and in
sence of aberrations or in presence of chromatic aberra
@7,9–11#.
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APPENDIX

Remarks on the numerical calculations

As it was mentioned before the boundary wave is disc
tinuous across the edge of the geometrical shadow. This
continuity arises from the factor in the integrand given by

g~K,L,c!5
K cosc21

11K222K cosc1K2L2sin2c
, ~A1!

where the constantL is positive for a spherical wave an
zero for a plane wave. At the edge of the geometrical shad
02660
y
e
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w

uKu51. If uKuÞ1 but it is close to unity theng(K,L,c) has
a sharp spike atc50 whenK.0 or at c5p when K,0
with the peak values of g(K,L,0)51/(K21) and
g(K,L,p)521/(K11), respectively. But, despite of such
diverging behavior, the integral ofg(K,L,c) is finite and it
is given by

E
0

p

g~K,L,c!dc5H 2p/A11K2L2, if uKu,1,

0, if uKu.1,

2~p/2!/A11K2L2, if uKu51.
~A2!

Moreover the integral ofg(K,L,c) can be written in the
form of

E
0

x

g~K,L,c!dc5(
i 51

2

CiarctanS qi tan
x

2D , ~A3!

where 0<x<p and the parametersC1 , C2 , q1, andq2 de-
pend onK and L. The fact that the former integral can b
expressed in a closed form could be useful for the numer
evaluation of the field of the boundary diffraction wave.
the observation point is in the vicinity of the edge of th
geometrical shadow (uKu is close to unity! it is worth evalu-
ating the integral in Eqs.~12!, ~26!, and ~35! by using the
mean value theorem of integral calculus.

For convergent spherical wave in the region of the g
metrical shadow close to the focal planeuKu@1 and 1/ud
2zu@1, so Eq.~35!, although valid at all points, is not con
venient for computations. It is worth writing Eq.~35! into a
new form. If we introduce a new functiong̃(K,L,c) instead
of g(K,L,c) given by
1-10



is

DIFFRACTION OF SHORT PULSES WITH BOUNDARY . . . PHYSICAL REVIEW E63 026601
g̃~K,L,c!5
cosc2K

11K222K cosc1L2sin2c
, ~A4!

then

g~K,L,c!

a~d2z!
5

g̃~1/K,L,c!

rd
, ~A5!

and so from Eq.~35! the field of the boundary wave pulse
given by
02660
uB~r ,z,t !5
u0a

2prdE0

p

hS t2
s~c!2 f

c D
3S 11

dz1a22ar cosc

s~c! f D g̃~1/K,L,c!dc

~A6a!

5
u0aei (v0t1k0f )

2prd E
0

p

vS t2
s~c!2 f

c D
3e2 ik0s(c)S 11

dz1a22ar cosc

s~c! f D g̃~1/K,L,c!dc.

~A6b!
ctr.
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