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Diffraction of short pulses with boundary diffraction wave theory
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The diffraction of short pulses is studied on the basis of the Miyamoto-Wolf theory of the boundary
diffraction wave, which is a mathematical formulation of Young's idea about the nature of diffraction. It is
pointed out that the diffracted field is given by the superposition ofltbendary wave pulsé€ormed by
interference of the elementary boundary diffraction waasl thegeometric (direct) pulségoverned by the
laws of geometrical optigs The case of a circular aperture is treated in details. The diffracted field on the
optical axis is calculated analyticallwithout any approximationfor an arbitrary temporal pulse shape.
Because of the short pulse duration and the path difference the geometric and the boundary wave pulses appear
separately, i.e., the boundary waves are manifested in themselves in the illuminated(iegiensense of
geometrical opticgs The properties of the boundary wave pulse is discussed. Its radial intensity distribution can
be approximated by the Bessel function of zero order if the observation points are in the illuminated region and
far from the plane of the aperture and close to the optical axis. Although the boundary wave pulse propagates
on the optical axis at a speed exceedind@ does not contradict the theory of relativity.
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[. INTRODUCTION For the sake of simplicity all the aberrations will be ignored,
that is, we will assume that the pulse front which fills the
Thomas Young was the first who made an attempt to exaperture is perfectly spherical or in special case plane.
plain the phenomena of diffraction on the basis of the wave
theory[1-5]. He assumed that the diffraction pattern arises
from the interference of the incident wave propagating in
accordance with the laws of geometrical optics and the Consider ar(arbitrary spherical or plane scalar wave dif-
boundary diffraction wave originated from the edge of thefracted at an aperture in an opaque plane scRaffe take
diffracting body. Because of its qualitative formulation andthe Cartesian reference system with the origirin the ap-
the success of Fresnel’s theory Young's idea had been foerture(Fig. 1) and with the axiz being perpendicular to the
gotten for a long time. Young's views was independentlyplane of the aperture pointing into the half space into which
rediscovered and formulated in a quantitative manner byhe light propagates.
Maggi and RubinowicZ2-5]. The theory of the boundary  |f the incident wave is monochromatic with angular fre-
diffraction wave was improved by Miyamoto and Wolf quencyw the diffracted wave at a poir®=(x,y,z) in the
[3—6] For more historical details of the tOpiC see the WOkaregion z>0 can be expressed in the foﬂ&]
of Rubinowicz[2,3] and Wolf[4,5].
The temporal and spatial behavior of a focused short
pulse was studied in Ref§7—9]. Perhaps the most unex- U(P,w)=Ug(P,w)+Ug(P,w), 1)
pected result of that investigation is that a spike appears on

the optical axis in front of the horseshoe-shaped pulse fron\}vhere Us(P,®) represents a wave propagating in accor-
(see Fig. 2 in Ref{7]). If the illumination of the lens is not G\ P propagating

h : . ) - dance with the laws of geometrical optics addg(P,) de-
omogeneous but spatially Gaussian with a negligible trun- _. . . )

, . h scribes a disturbance emerging from the points of the edge of
cation of the input beam the forerunner pulse disapplers
(see Fig. 2 in Ref[8]). If the truncation of the incoming
spatially Gaussian beam is not negligible the spike appears
on the optical axis again with the amplitude being propor-
tional to the amplitude of the incoming field on the lens
aperture[10,11]. From this fact and the other properties of
the spike(position, speed, and radial intensity distribudion
we concluded that the intensity spikaulse is caused by the
superposition of the boundary waves generated by the lens
aperturd 7—11]. In order to emphasize the origin of the pulse
on the optical axis it was calleboundary wave pulseThe
other pulse front was namedain pulse

However, these are only indirect marks for the origin of

the boundary wave pulse. We have owed for its direct deri-
vation up to now. The aim of this paper is to give a direct
explanation of the formation of the boundary wave pulse. FIG. 1. Notations relating to the calculations.

I. BOUNDARY WAVE PULSE
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the aperture. Within the accuracy of the Kirchhoff diffraction solution will be treated in detail. The radius of the aperture
theory theUg(P,w) boundary diffraction wave is given by will be denoted bya and the origin of the reference frame

[6] will be taken in the center of the aperture.
e ' (e;xp)e A. Plane wave
Ug(P,w)= 5£ui<Q,w>4 s =-dl. @ - _ _
r TS 1+esp Let us assume that the incident wave is a plane wave with

normal incidence, that is
whereI" denotes the boundary of the aperture &ds a

typical point ofI', U, is the incident fields is the distance
QP, k=wl/c is the wave numberdis the speed of light és

is the unit vector pointing fron@Q to P, 5 iS a unit normal
vector of the phase front of the incident wave at pdint whereug is a constant anti(t) describes the arbitrary time
pointing in the direction of the propagation aedis the unit ~ €volution of the pulse. Itis evident that the wave propagating
tangent vector of at pointQ (Fig. 1. As it is known[6],in N accordance with the laws of geometrical optics is given by
case of monochromatic spherical or plane waves(Bqwith
Eq. (2) gives the exact solution of the Kirchhoff diffraction
integral and it can be regarded as a good approximation for u;(P,t), if P isinthe direct beanir<a),
other 'types of monochromatic fields'provide'd that the inci- Us(P.t)= 0, if P isinthe shadow(a<r).
dent field can be treated by geometrical optics. (7)
A nonmonochromatic field can be represented as a com-
position of monochromatic waves:

ui(P,t)=ugh(t—2z/c), (6)

By calculating the Fourier transform of(P,t) one can ob-
u(P,H=F HU(P,w)}, (3 tainthat

where U(P,w)=Fu(P,t)} and the symbolsF and F !

denote the Fourier transformation and its inverse, respec- Ui(P,0)=Fu;(P,t)}=uoH(w)e ¥, (8
tively. Decomposing the incident field by the Fourier trans-

form into its monochromatic components and using &g.

for each spectral component one can get a similar expressiodhereH (o) =F{h(t)}. At the plane of the aperturz=0 so
for the diffracted field: Ui(Q,w)=ugH(w). After a straightforward calculation the

monochromatic boundary diffraction wave at a pd#in the
regionz>0 is given by

u(P,t)=ug(P,t)+ug(P,t), (4)
where
_ UoH(@) (7 s L)
Uo(P.) = F {Ug(P,w)}, SR A P P Ea ) g(K"”)d‘/’ég)
ug(P,t)=F HUg(P,w)}, (5b)

wherer = \x?+y?Z is the distance of poir® from the optical

and Ug(P,w) is defined by Eq(2). Equation(4), likewise
Eq. (1), is valid for spherical or plane waves and can be
regarded as a good approximation in case of other types of
incident fields if the input field can be described by geo- ———
metrical optics. We will show that under the circumstances s(y)=z*+a’+r?-2ar cosy, (10
treated in Refs[7-9), that is, in case of a circular aperture
and convergent spherical pulsg;(P,t) andug(P,t) can be
associated with the main and boundary wave pulsesn-
tioned in Sec.), respectively. Therefore, we will refer to the
field described by Eq(5b) [with Eq. (2)] as the boundary
wave pulse. ~ Kecosy—1
The special case of a circular aperture, with incident fields g(K.¥) = 1+K2—2K cosy’
having axial symmetry around the optical axsymmetry
axis of the circular apertuyecould be of special importance.
In this case the amplitude &g andUg could be compa- From the definition oK one can see thatOK <1 if Pis in
rable along the optical axigl2]. In the following we will  the direct beam, an&k>1 whenP is in the geometrical
study such cases. The three cagalsine, convergent, and shadow. The field of the boundary wave pulse is the inverse
divergent spherical wavgsn which Eq.(4) gives the exact Fourier transform of Eq(9):

K=r/a is a dimensionless variable and

(11)
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1+zlsy 1+2zlJa*+27°

o 1.0 AB(Z) = 2 2 (16)
>
o
g It is worth introducing a new variable defined by
g
g So—z ~a‘+z’-z
g To=—="—"— (17)
o
S
3 0.0 3 . :
E TR Then one can write Eq14) in the form of
3
o os ug(z,t)=—Ag(z2)ugh[t—2/c—T(2)] (183
5 :
B
E =—Ag(u[zt=T(2)]. (18
_§ 1. As mentioned before, the diffracted field in the half space
>0 can be calculated by(P,t)=ug(P,t) +ug(P,t) [EQ.
£9.93 9994  $9.93 §9.04 (4)] whereug andug are given by Eqs(7) and(;Z), respec-
zla zla b tively. It follows from Eg. (18) that for the pointsP at the
@ (b) optical axis we have a simple expression:

FIG. 2. (a) Diffraction pattern of a short pulse having plane
pulse front incident normally on a circular apertuge denotes the
radius of the apertuje(b) The intensity distribution of the geomet-
ric (upper half and boundary wavélower half pulses. The dif- which means that as a result of the diffraction two pulses
fracted field is given by the sum of the fields of the geometric andpropagate on the optical axis with the same temporal shape.
the boundary wave pulses. The intensity is measured in arbitrarfhe time difference between the two pulses at an axial point

u(z,t)=u;(z,t)—Ag(2)ui[z,t=T(2)], (19

units[a.ul.

z
1+ W)Q(K,l/f)dl/f

uB(r,z,t)=:—;J;h(t—s(z,b)/c) .

(123

uoeiwot -

=% fov(t—s(g/;)/c)
: z
X 'koS<¢>(1+—) K, ) de, 12
e sgp 90 wdu (12
where in the last step the usual expression of

h(t)=v(t)e'“d (13

P is given by T(z). One can see from Eq17) that O
<T(z)<alc andT(z) is a monotonously decreasing func-
tion of z, i.e., larger values aof yield smaller temporal sepa-
ration. This means that the boundary wave pulse always ar-
rives later than the geometric pulse, but it is catching up as
time evolves. The minus sign shows that a phase shift of
occurs between the geomet(idirect beam and the bound-
ary wave pulses. It follows from E@16) that the amplitude
Ag(z) varies between 1/2 and 1 and asymptotica#iiy(z)
~1 if a’<Zz.

Figure 2a) shows the diffraction pattern of a=10 fs
pulse with a Gaussian temporal shape ager 2 7/ky=800
nm central wavelength at time=600 ps calculated from
Egs.(4), (7) and(12). The incoming pulse reaches the plane
of the diffracting aperture at=0. The radius of the aperture
was assumed=2 mm. In Fig. Zb) the intensity distribution
of the geometri¢calculated from Eq(7)] and the boundary

was used. Here(t) and o, denote the temporal envelope diffraction waves|calculated from Eq(12)]. was plotted ip
and the central angular frequency of the input pulse, respedhe upper and the lower halves of the figure, respectively.

tively, andky= wq/c is the wave number ab. It is easy to
see that on the optical axis the integrand in 8@) does not

depend ony so forr=0 the boundary wave pulse is given

by
Ug(z,t) = —Ag(z)ugh(t—sp/c), (14
where
So=\a’+ 7%, (15)

and Ag(2) is the relative amplitude of the boundary wave

pulse(compared to the incident pulse

The correspondence between the intensity and the shading is
indicated by the gray scale next to the linear intensity axis in
Fig. 4(a). The diffraction pattern contains two types of inter-
ference stripes. One of them is caused by the interference of
the elementary boundary diffraction wavelets. These stripes
can be seen both in Figs(@ and(b). The other interference
stripes are caused by the interference between the geometric
and the boundary diffraction waves. Obviously this type of
stripes occurs only in Fig.(2).

B. Divergent spherical wave

Consider a divergent spherical wave generated by a point
sourceF located on the optical axis, that i5,=(0,0,—d),
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whered>0 is the distance of the source from the plane ofwhereu, is a constanth(t) is an arbitrary function describ-

the aperture. Then the incident wave is given by ing the temporal shape of the pulse, an®
=X?+y?+(d+2)°=r’+(d+2)? is the distanceFP. It
h(t—R/c) is clear that the wave propagating according to the law of
ui(P,t)=u0T, (20 geometrical optics is described by

u;(P,t), if P isinthe directbean{r<ad/(d+2z)],

Us(P-U=10, if P isinthe shadowfad/(d+2)<r]. -

The monochromatic components wf P,t) is given by uge' (ot ko) raz f+s(y) kst
T 2md+2 JoUITT T ¢ )®
—ikR
U,(P,w)=Fu;(P,t)}=ugH(w) , (22 dz—a’+ar cos
| (EDI =t 7 x| 1+ Y gtk.Lpdy,
s()f
whereH (w) = F{h(t)}. After a long, but straightforward cal-
culation one can obtain (26b)
UH(w)e K [7 where in the last step(t)=v(t)e'“o! is used again. On the
Ug(r,z,w)= omdiz) g ks(¥) optical axis ¢ =0) the integrand in Eq26) is a constant so
& 0 the integration results in a multiplication hy:.
ol 14 dz—a2+arcos¢> K.L)d
s(y)f oik.Ldy DA h[t—(f+sp)/c] )
(23) UB(Z, )_ B(Z)UOTa ( 7)
for the monochromatic boundary diffraction wave at a point
P in the regionz>0, wheref = JaZ+d? is the radius of the 15
wave front that fills the apertures=s() is the same as in 2
Eq. (10), K a dimensionless variable given by 5 Lo
2 :
K= d 1 24 g
“diza 24 o o3
5
L=a/d is a dimensionless parameter and T 0.0 &
(KL.g)= K cosy—1 - A 0.5
I K7 2K cosy+ K2LZsirPy 8
g 1.0
From Eq.(24) it follows that 0<K <1 if P is in the direct '§
beam, andK>1 whenP is in the geometrical shadow, like- 8
wise in the case of plane waves. By calculating the inverse L3
Fourier transform of Eg(23) one can obtain the field of the 00,55 T P — —_—
boundary wave pulse: () zla zla (b)
_ Uo ™ f+s() FIG. 3. (a) Diffraction pattern of a short divergent spherical
ug(r.z,t)= 2m(d+2) Jo hit-= pulse incident on a circular aperture. The center of the incident

pulse front is located on the optical axib) The intensity distribu-
dz—a?+ar cosys tion of the geometricupper half and boundary wavdower half)
1+ s()f )Q(Kal—,lﬂ)dlﬁ pulses. The interference of the geometric and the boundary wave
pulse yields the diffraction pattern plotted on the left half The
(269 intensity is measured in arbitrary unfis.u].

X
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wheres,=\a?+z? [Eq. (15)] and the relative amplitude of
the boundary wave pulse is given by

dz—a?

fya?+2z°

Ag(2) 1

> +

. (28

PHYSICAL REVIEW E3 026601

tral wavelength at the moment 1000 ps after the incoming
pulse reached the edge of the apertiue, t=f/c+ 1000 ps
~3000 ps calculated from Eq94), (21), and(26). The cal-
culation was done by assuming thet2 mm andf =600
mm. The intensity distribution of the geometfiEq. (21)]
and the boundary diffraction wavggq. (26)] were depicted

in the upper and the lower halves of Figh8 The intensity

If we introduce a variable with a dimension of time defined distributions were plotted with the same gray scale used in

by
=194 22 29
@=" (29
f-d Ja’+z°-z
= + , (29b)
c c

Eq. (27) can be written in the form of

ug(z,t)=—Ag(2)ui[z,t=T(2)]. (30

The diffracted wave behind the screen is the sum of the field

of the geometriddirect) beam and the boundary wave pulse
[Eq. (4)]. Using Egs.(21) and(30) on the optical axis it can
be written in a form of

u(z,t)=ui(z,t) —Ag(2)u[ z,t —T(2)]. (31

One can conclude from E@31) that, as a result of the dif-

the previous case. Again we can observe the two types of
interference stripes. The ones, occurring both in Figa) 3
and (b), correspond to the interference of the elementary
boundary diffraction wavelets, whereas the stripes observ-
able only in Fig. 8a) correspond to the interference between
the geometric and boundary waves.

C. Convergent spherical wave

Consider now a spherical wave converging towards an
axial focal pointF in the regionz>0. ThenF=(0,0d),
whered>0 is the distance of the focus from the plane of the
§perture. In front of the focal plane<{d) the incident wave
is represented by a converging spherical wave. When the
input wave passes through the focus it becomes a divergent
spherical wave and a phase changerabccurs[4,12]. This
behavior(known as phase anomaly or Gouy shiff a geo-
metrical optical effect that occurs along the rays passing
through either of the two principal centérsf the incident

fraction, two pulses with the same temporal shape propagat&ave front[4,6]. Hence the incident wave can be written in a

along the optical axis and the temporal shape of the pulses
identical with the input pulse shape. It follows from Eg9)
that 0<(f—d)/c<T(z2)<(f—d)/c+al/c and T(z) de-

creases monotonically. From this we draw a conclusion simi-

lar to the plane wave case, that is at a point givez by the

ferm of

ugh(t+R/c)/R,
. P =
UWPD=1 _ | ht=Rio)/R,

if z<d,

if d<z, 32

boundary wave pulse always arrives later than the geometrighereug is a constanth(t) is an arbitrary function an®
pulse. The temporal separation of the two pulses is always: yx*+y?+ (z—d)?=\r?+ (z—d)? is the distancé&P and

larger than {—d)/c, and it decreases with increasing
Figure 3a) shows the diffraction pattern of a=10 fs
pulse with a Gaussian temporal shape age 800 nm cen-

the sign change represents the phase shiftr ahentioned
above. It is easy to show that the wave propagating accord-
ing to the law of geometrical optics is given by

ui(P,t), if P isinthe direct beanir<ad/|z—d|],
Us(P.)= 0, if P isinthe shadow[ad/|z—d|<r]. 33
|
On the optical axis Eq(393) yields upe'(@ot*kof) 7 s(p)—f|
= —_— v t— e*'kos(lﬂ)
h(t—(z—d)/c) 2m(d—2) Jo
UG(Zat):ui(Zat):_uoT- (34)
dz+a?—ar cosy
In the same way as treated in the two previous cases one can x| 1+ S a(K,L,¢)de,
calculate the boundary wave pulse. It is given by
Uo ” s(¢)—f
S — 35b
ug(r,z,t) Zw(d—z)fo h(t S (35b)

dz+a?—ar cosy

~ ()t

1+

)g(K,L,w)dw
(359

wheref = \Ja?+ d? is the focal lengttithe radius of the pulse

1In our special case the two principal centers coincide.
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front filling the aperturg the dimensionless variablg is
now defined by

K= ar 36
S d-za’ (36)

and in the last step(t)=uv(t)e'“e is used again. The defi-
nitions of H(w), s=s(#), L andg(K,L,) are the same as

the ones for the divergent spherical wave, givenHbw)
=Hh(t)}, Eq(10), L=a/d and Eq.(25), respectively.

It follows from Eq. (36) that O<|K|<1 if P is in the
direct beam)K|>1 whenP is in the geometrical shadotv,

and 0<K if P is between the plane of the aperture and the
focal plane (6<z<d) or K=0 for points behind the focal

plane d<z).
On the optical axis{=0) Eq.(35) yields

h[t—(sy—f)/c]

z—d ' 37)

Ug(z,t)=Ag(2)ug

wheres,= \a?+ 7%, and the relative amplitude of the bound-

ary wave pulse is given by

1 dz+a?
Aal2)= 5| 14—

2 Va4 22

. (39

PHYSICAL REVIEW E63 026601

=0 at the focal point £=d). That is, T(z) is positive in
front of the focal point (6<z<d) and negative after the
focal point [d<z), which means that at an axial point behind
the aperture the boundary wave pulse arrives later than the
geometric pulse in front of the focal point, and it precedes
the geometric pulse after the foc(see Figs. 4 and)5The
boundary wave pulse overtakes the geometric pulse at the
focal point. At the focal point botlig(z,t) andug(z,t) has
singularity[see Eqgs(34) and Eq.(37)], but the sum of the
two fields is finite. Calculating the limit of Ed41) one can
obtain the field at the focuz&d) by

u(F,t)=uouh’(t). (42
cf

The statements stated above are in full agreement with
our previous results published in Ref§.,9,11. Using the
approximations applied thefeEgs. (41) and (42) turn into
the equation for the focused field published previolly.
(18) in Ref.[9] and Eq.(18b) in Ref.[11]]. In this treatment
no approximation was used. Equatiofil) gives the exact
solution of the diffraction problem within the validity of
Kirchhoff's diffraction theory.

Figures 4a) and Ja) show the diffraction pattern of a
=10 fs long pulse with a Gaussian temporal shape Xgd
=800 nm central wavelength at the mometts— 30 ps and

Again, we introduce a variable with a dimension of time =30 ps, respectiveljcalculated from Eqs(4), (33), and

defined by
T(g=32f, o2 39
D)=+~ (393
d—-f Ja?+z°-z
= + : (390
c c

then Eq.(37) can be written in the form of

ug(z,t) = —Ag(2)Ui(z,t=T(2)). (40)

(35)]. The gray scale next to the linear intensity axis shows
the relation between the intensity and the shading. The
shaded image on the right was depicted with proportional
scaling of the spatial coordinatez-{d) andr. The calcula-
tion was done by assuming that=2 mm andf=50 mm.
The incoming pulse reaches the edge of the apertute- at
—f/c and passes through the focugat0. In Figs. 4b) and
5(b) the intensity distribution of the geometfiEq. (33)] and

the boundary diffraction wavieq. (35)] was depicted in the
upper and the lower halves of the figure. Comparing Fig. 5
with Fig. 4 one can see that at tinhe- 30 ps the boundary

As it was mentioned before, the diffracted wave behind théVave pulse is a little bit closer to the geometric pulse than at

screen is the sum of the fields of the geomeficec) beam
and boundary wave pul$&q. (4)]. It follows from Egs.(33)

timet=—30 ps. This is a manifestation of the asymmetry of
the focused field which becomes more and more consider-

and (40) that the field on the optical axis can be written in aable for smaller Fresnel numbefd3]. In our case the

form of

u(z,t)=u;(z,t)—Ag(2)u;(z,t —=T(2)). (41

From Eq.(41) we see that two pulses with the same temporal

Fresnel number idl=a?/(\,f)=100.

D. Properties of the boundary wave pulse

From Figs. 2-5 one can conclude that the shape of the

shape propagate on the optical axis and the temporal shapeundary wave pulse is similar to a letter X. This X shaped
of the pulses is identical with the input pulse shape as waprofile is not the only similarity between the boundary dif-

the case before. It follows from E¢39) that the temporal

fraction wave pulse and the so-called X wdid—-16. We

separation of the two pulse3(z)) decreases monotonously Will later see that the boundary wave pulse propagates at

betweena/c—(f—d)/c>0 and —(f—d)/c<0 and T(2)

2When the observation point is in the geometrical shad¢w
+w if z—d andr is fixed. Then, because of large valueKofEq.

(35) is not convenient for the computation of the boundary diffrac-

superluminal velocity likewise an X wad5,16. Besides
the similarities there are differences between the two waves.
The most important one may be that in contrast to an X
wave, which is a nondiffracting beafne., it preserves its

tion wave. A more Appropriate equivalent formula can be found in 3In Refs.[7,9] paraxial and Debye approximations, in REF1]

the AppendixEg. (A6)].

paraxial approximation was used.
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FIG. 4. (a) Diffraction pattern of a short convergent spherical pulse passing through a circular aperture before the pulse reaches the focus.
The inset on the right shows the intensity distribution with proportional scaling of the spatial coordibpfid®e intensity distribution of the
geometric(upper half and boundary wavdower half pulses. On the optical axis in front of the focus<(d) the boundary wave pulse is
closer to the aperture than the geometric pulse.

radial profile, the boundary wave pulse spreads during thewherey is the angle which the scattered ray starting from a
propagatior{see Eq.(53), Figs. 4 and } typical pointQ of the aperture and passing through the axial
The boundary wave pulse has a significant intensity orpoint given byz makes with the direction of the propagation
the optical axis and the boundary of the geometrical shadovof the incoming wavesee Fig. 8. If to andty denote the
This behavior is expected. Because of the cylindrical symmoments when the incoming pulse reaches the edge of the
metry the interference of the elementary boundary diffractioraperture and the origin of the reference fra(®@. 6) then
waves is constructive along the optical axis. Since the difthe time delay can also be expressed in a uniform expression
fracted wave is a continuous function of the position and theof
geometrical wave is discontinuous across the edge of the
geometrical shadow, the boundary pulse should also be dis- So—2
continuous in order to compensate for the discontinuity. T(z)=At+ ,
It has been shown that for all the three previous cases the
boundary wave pulse on the optical axis is given by

- (45)

where At=ty—tg is a constantdepending on geometry
ug(z,t)=—Ag(2)u[z,t=T(2)], (43)  The position of the boundary wave pulse on the optical axis
at the moment=tqy+a/c can be calculated from Eq&3)
where Ag(2) is the relative amplitude and(z) the time and(45). Itis given by
delay compared to the dire¢geometri¢ wave [see Egs.
(18), (30), and(40)]. Both of these quantities have a simple z5(t)=\[c(t—tg)P—a>. (46)
geometrical meaning. Using the notations of Fig. 6, it is ob-
vious that cosr=27/5), sinae=als,, cosp=d/f and sinB=a/f.
Hence, Eqs(16), (28), and (38) can be summarized in a
uniform expression:

Hence the peak of the boundary wave pulse moves along the
optical axis at a velocity of

1+ . cc(t—tp) So(zg) c
AB(Z)=$=CO§)2—(, (44) Ve 8" [c(t—tQ)]Q—a N OzBB = cosa’ 47
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FIG. 5. (a) Diffraction pattern of a short convergent spherical pulse passing through a circular aperture after the pulse has passed through
the focus. The inset on the right shows the intensity distribution with proportional scaling of the spatial coordaid® intensity
distribution of the geometricupper half and boundary wavdower half) pulses. On the optical axis behind the focds<(z) the boundary
wave pulse is farther from the aperture than the geometric pulse.

¢, it does not violate the relativistic causality principle, since  Us(r,zt)= v(t—to—s(y)/c)e ko)

the elementary boundary wavelets originated from the edge

of the aperture propagaexactlyat a speed ot along the XA(r,z,)g(K,L, ) dy, (48
scattered rays. Because of this an interference phenomenon

on the optical axis caused by boundary diffraction wavesvhere A(r,z,¢) is a given function(and L=0 for plane
(and so the boundary wave pulsmoves at a speed of waves. If the observation point is in the direct beam and it is

c/cosa, wherea is the angle which the scattered ray makestloSe t0 the optical axigk|<1 and hencey(K,L,y)~—1.
with the optical axis at an axial poitisee Fig. 6. Furthermore, if the observation point is far from the plane of

As mentioned in the previous section the interference{Phe aperture, by expanding the square root in @), s can

among the elementary boundary waves produces an interfe ¢ approximated by

ence pattern consisting of concentric rings in a plane being r2—2ar cosy
perpendicular to the optical axis. The structure of that pattern s=/sg+r2—2ar cosy~sy+ s, (49

can hardly be seen in Figs. 2-5. In order to expose the de- 0

tails, a portion of Fig. €) (neighboring the optical axiss  The last approximation is valid [t >~ 2ar cosy{<s5, where
depicted again in Fig.(@ with a proportional scaling of the g — /3% 72 Under these conditionsA(r,z,¢) and
spatial coordinates. The position of the boundary wave pulsg(k L, ) are slowly varying functions ofy. We will ap-

on the z axis att=—30 ps is denoted by, (i.e,, o  proximate them in the integrand by their values at the optical
=2zg(t)). The radial distribution of the boundary wave pulse axis (that is Ay(z)=A(0.z,4) and —1, respectively The
resembles the one of a Bessel bgdif| of zero order, as its  variation of the integrand caused by envelagg) is also
radial intensity distribution is given by the square of thenegligible ifra/s,=r sina<cr, wherer denotes the tempo-
Bessel function of zero ordedf). The radial intensity dis- ral duration of the pulse. That is, if the observation point is in
tribution of the boundary wave pulse can be explained ashe direct beam, and it is far from the plane of the aperture
follows: The expression of the boundary wave pulse for alland close to the optical axis amain e<<cr, the field of the
the three cases can be written in a form of boundary wave pulse can be approximated by

wherea is marked in Fig. 6. Although this velocityxceeds uoei‘”o(ttQ)Jw
0
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FIG. 6. Notations relating to the calculations for the axial be-

havior of the boundary wave pulsk, andt, denote the time in-
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where sie=a/\/a’+z?. Owing to our assumptiong 6ina
<cr and r<a) the radial variation caused by the factor
r2/(2c\Ja?+z%) = (r/a)r sina/(2c) is negligible with respect
to Jy, that is the field of the boundary pulse can be approxi-
mated by

ug(r,z,t)~—Ag(2)u;(z,t—T(z))Jo(kosinar). (52

Figure 7b) shows the comparison of the radial intensity dis-
tribution att=— 30 ps in planey= zg(t) calculated from the
exact[Eq. (35)] and the approximateEq. (52)] formulas for
different values of the incoming pulse duratienThe rest of

the parameters of the calculation were the same as the ones
used for Fig. Ta). The results of the exact expression were
displayed by dotted /=10 fs) and solid =30 f9 lines.

The intensity belonging to the approximate formula was in-
dicated with hollow circles. The approximation is much bet-
ter for larger pulse duration. For smaller pulse duration the
intensity decreases faster than the approximate intensity, but
the approximation gives the radii of the dark rings accu-
rately. The radius of thenth dark ring is given by

Xm 2

'm=2m

z
1+
a

Xm Z

7\0%%5)\0, (53)

wherex,, is themth positive root of the equatiody(x)=0.*

IIl. CONCLUSIONS

The diffraction of femtosecond pulses at a circular aper-
ture has been studied on the basis of the Miyamoto-Wolf
theory of the boundary diffraction wave which is a math-
ematical formulation of Young's idea about the nature of
diffraction. It has been pointed out that the diffracted pulse
can be represented as a sum of the boundary wave pulse
(generated by the edge of the aperjwaed the “geometric”
pulse (represented by geometrical oplic8ecause of the
pulsed illumination and the path difference between the geo-

stants when the pulse front reaches the edge of the aperture and tRetric and boundary waves the geometric and boundary
origin of the reference frame, respectively. The pulse fronts belongave pulses appear separately. This is the main difference

ing to these instants are plotted with solid and dashed line.

so r?l(2s
UB(r,Z,t)N _AO(Z)u0h<t_tQ_ ?0— %)

X

1 (= . )
- ikor sina cosys
Wfo elo d«/f}, (50)

where the expression df(t)=uv(t)e'o! is used in the last

step. Since, the integral in the square bracket equals to

mJo(KeSinar) and Ag(z)ugh(t—tgo—sp/c)=Ag(2)ui(z,t
—T(2)), we have

r2

20\/a7+ z2

X Jo(KgsSinar), (51

ug(r,z,t)~ —AB(z)ui( z,t—T(2)—

between the monochromatic and pulsed illumination. The
monochromatic waves are infinite waves hence the boundary
wave and the geometric wave appear simultaneously. There
is no way to separate the two waves. The boundary wave can
directly be observed only in the geometric shadow where it
equals to the diffracted wave. In case of pulsed illumination,
because of the finite and short pulse duration, the boundary
waves are manifested not only in the geometrical shadow but
in the illuminated region, too.

The properties of the boundary wave pulse have been
studied. The diffracted field on the optical axis has been
calculated analytically for arbitrary temporal pulse shapes. It
has been pointed out that the boundary wave pulse propa-
gates on the optical axis at a speed larger thakn approxi-
mate expression has been derived for the intensity of the
boundary wave pulse in a plane perpendicular to the optical

4, =2.405,x,=5.5201,x3=8.6537,x,= 11.7915.
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FIG. 7. (8 In order to expose the details of the radial distribution of the intensity the axial region of @gis4dlepicted again with
proportional scaling of the coordinates. The radial intensity distribution of the boundary wave pulse resembles the one of a zero order Bessel
beam.(b) Radial intensity distribution of the boundary wave pulse for different values of the pulse duratiose to the axis the intensity
can be approximated by the Bessel function of zero ordgy. (The larger the pulse duration the better the approximation.

axis. The radial intensity distribution can be approximated byK|=1. If |K|#1 but it is close to unity theg(K,L,) has

the Bessel function of zero order if the observation points area sharp spike aty=0 whenK>0 or at = whenK<0

in the illuminated regiortin the sense of geometrical optics with the peak values ofg(K,L,0)=1/(K—-1) and

far from the plane of the aperture and close to the optica(K,L,w)=—1/(K+1), respectively. But, despite of such a

axis. diverging behavior, the integral af(K,L,) is finite and it
Although the Miyamoto-Wolf theory of the boundary dif- is given by

fraction wave gives the exact result of the Kirchhoff diffrac-

tion integral only for spherical and plane waves, it can be

regarded as a good approximation for other types of waves. —mlJ1+K3L2, i |K|<1,

Therefore the boundary wave pulse can appear for other |7 _ ;

types of incoming wavegor in presence of aberrationsAs Jo g(K.L,y)dy=1 0, if K> 1,

it was mentioned in the introduction, the boundary wave —(mlIV1+K2L?, i [K|=1.

pulse appears when a short pulse is focused by a lens and the (A2)

incoming beam is truncated by the lens aperture for both

homogeneous or spatially Gaussian illumination and in abMoreover the integral ofy(K,L,) can be written in the

sence of aberrations or in presence of chromatic aberratiofyrm of

[7,9-11.
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208/97. where 0<x< and the paramete3,, C,, q;, andq, de-
pend onK andL. The fact that the former integral can be
APPENDIX expressed in a closed form could be useful for the numerical
evaluation of the field of the boundary diffraction wave. If
the observation point is in the vicinity of the edge of the
As it was mentioned before the boundary wave is discongeometrical shadow K| is close to unity it is worth evalu-
tinuous across the edge of the geometrical shadow. This disting the integral in Eqs(12), (26), and (35) by using the
continuity arises from the factor in the integrand given by mean value theorem of integral calculus.
For convergent spherical wave in the region of the geo-
K cosy—1 metrical shadow close to the focal plat€|>1 and 1/d
1+K2— 2K cosy+ K2L2sirPy’ (A1) —z|_>1, so Eq.(35), a_lthough_ valid at aII_ points, is not con-
venient for computations. It is worth writing E(B5) into a
where the constarnit is positive for a spherical wave and new form. If we introduce a new functiog(K, L, ) instead
zero for a plane wave. At the edge of the geometrical shadowf g(K,L, ) given by

Remarks on the numerical calculations

g(K.L,y)=

026601-10
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SKLog) = cosy—K (Ad)
kL " 14K2—2K cosy+ L2sirty’
then
K,L, g(1K,L,
g(K,L,¥) o ) (A5)

a(d—z) rd :

and so from Eq(35) the field of the boundary wave pulse is

given by

PHYSICAL REVIEW E3 026601

Upa (7 s(y)—f
N LR

dz+a2—arcos¢)~ UK L und

(A6a)

X| 1+

t

uoaei(wot-%—kof)fw
% |,

2mrd

_aw—q

0 Cc

dz+a’—ar cosy

1+ )5(1/K,L,¢)d¢.

X @~ ikos(¥)
s()f

(ABb)
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